1,031 research outputs found

    Thermodynamics of Two Dimensional Magnetic Nanoparticles

    Full text link
    A two dimensional magnetic particle in the presence of an external magnetic field is studied. Equilibrium thermodynamical properties are derived by evaluating analytically the partition function. When the external field is applied perpendicular to the anisotropy axis the system exhibits a second order phase transition with order parameter being the magnetization parallel to the field. In this case the system is isomorph to a mechanical system consisting in a particle moving without friction in a circle rotating about its vertical diameter. Contrary to a paramagnetic particle, equilibrium magnetization shows a maximum at finite temperature. We also show that uniaxial anisotropy in a system of noninteracting particles can be missinterpreted as a ferromagnetic or antiferromagnetic coupling among the magnetic particles depending on the angle between anisotropy axis and magnetic field.Comment: 4 pages 6 figures 19 reference

    Rabies elimination research: juxtaposing optimism, pragmatism and realism

    Get PDF
    More than 100 years of research has now been conducted into the prevention, control and elimination of rabies with safe and highly efficacious vaccines developed for use in human and animal populations. Domestic dogs are a major reservoir for rabies, and although considerable advances have been made towards the elimination and control of canine rabies in many parts of the world, the disease continues to kill tens of thousands of people every year in Africa and Asia. Policy efforts are now being directed towards a global target of zero human deaths from dog-mediated rabies by 2030 and the global elimination of canine rabies. Here we demonstrate how research provides a cause for optimism as to the feasibility of these goals through strategies based around mass dog vaccination. We summarize some of the pragmatic insights generated from rabies epidemiology and dog ecology research that can improve the design of dog vaccination strategies in low- and middle-income countries and which should encourage implementation without further delay. We also highlight the need for realism in reaching the feasible, although technically more difficult and longer-term goal of global elimination of canine rabies. Finally, we discuss how research on rabies has broader relevance to the control and elimination of a suite of diseases of current concern to human and animal health, providing an exemplar of the value of a ‘One Health’ approach

    Domestic dog demographic structure and dynamics relevant to rabies control planning in urban areas in Africa: the case of Iringa, Tanzania

    Get PDF
    <p>Background Mass vaccinations of domestic dogs have been shown to effectively control canine rabies and hence human exposure to rabies. Knowledge of dog population demography is essential for planning effective rabies vaccination programmes; however, such information is still rare for African domestic dog populations, particularly so in urban areas. This study describes the demographic structure and population dynamics of a domestic dog population in an urban sub-Saharan African setting. In July to November 2005, we conducted a full household-level census and a cross-sectional dog demography survey in four urban wards of Iringa Municipality, Tanzania. The achievable vaccination coverage was assessed by a two-stage vaccination campaign, and the proportion of feral dogs was estimated by a mark-recapture transect study.</p> <p>Results The estimated size of the domestic dog population in Iringa was six times larger than official town records assumed, however, the proportion of feral dogs was estimated to account for less than 1% of the whole population. An average of 13% of all households owned dogs which equalled a dog:human ratio of 1:14, or 0.31 dogs per household or 334 dogs km-2. Dog female:male ratio was 1:1.4. The average age of the population was 2.2 years, 52% of all individuals were less than one year old. But mortality within the first year was high (72%). Females became fertile at the age of 10 months and reportedly remained fertile up to the age of 11 years. The average number of litters whelped per fertile female per year was 0.6 with an average of 5.5 pups born per litter. The population growth was estimated at 10% y-1.</p> <p>Conclusions Such high birth and death rates result in a rapid replacement of anti-rabies immunised individuals with susceptible ones. This loss in herd immunity needs to be taken into account in the design of rabies control programmes. The very small proportion of truly feral dogs in the population implies that vaccination campaigns aimed at the owned dog population are sufficient to control rabies in urban Iringa, and the same may be valid in other, comparable urban settings.</p&gt

    Response to a rabies epidemic in Bali, Indonesia

    Get PDF
    Emergency vaccinations and culling failed to contain an outbreak of rabies in Bali, Indonesia, during 2008–2009. Subsequent island-wide mass vaccination (reaching 70% coverage, >200,000 dogs) led to substantial declines in rabies incidence and spread. However, the incidence of dog bites remains high, and repeat campaigns are necessary to eliminate rabies in Bali

    A comparison of human and pig decomposition rates and odour profiles in an Australian environment

    Full text link
    © 2018, © 2018 Australian Academy of Forensic Sciences. Cadaver-detection dogs are trained to locate victim remains; however, their training is challenging owing to limited access to human remains. Animal analogues, such as pigs, are typically used as alternative training aids. This project aimed to compare the visual decomposition and volatile organic compound (VOC) profile of human and pig remains in an Australian environment, to determine the suitability of pig remains as human odour analogues for cadaver-detection dog training. Four human cadavers and four pig carcasses were placed in an outdoor environment at the Australian Facility for Taphonomic Experimental Research (AFTER) across two seasons. Decomposition was monitored progressively in summer and winter. VOCs were collected onto sorbent tubes and analysed using comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Visual observations highlighted the differences in decomposition rates, with pig remains progressing through all stages of decomposition, and human remains undergoing differential decomposition and mummification. Chemical and statistical analysis highlighted variations in the composition and abundance of VOCs over time between the odour profiles. This study concluded that the visual decomposition and VOC profile of pig and human remains was dissimilar. However, in cooler conditions the results from each species became more comparable, especially during the early stages of decomposition

    Integrating the landscape epidemiology and genetics of RNA viruses: rabies in domestic dogs as a model

    Get PDF
    Landscape epidemiology and landscape genetics combine advances in molecular techniques, spatial analyses and epidemiological models to generate a more real-world understanding of infectious disease dynamics and provide powerful new tools for the study of RNA viruses. Using dog rabies as a model we have identified how key questions regarding viral spread and persistence can be addressed using a combination of these techniques. In contrast to wildlife rabies, investigations into the landscape epidemiology of domestic dog rabies requires more detailed assessment of the role of humans in disease spread, including the incorporation of anthropogenic landscape features, human movements and socio-cultural factors into spatial models. In particular, identifying and quantifying the influence of anthropogenic features on pathogen spread and measuring the permeability of dispersal barriers are important considerations for planning control strategies, and may differ according to cultural, social and geographical variation across countries or continents. Challenges for dog rabies research include the development of metapopulation models and transmission networks using genetic information to uncover potential source/sink dynamics and identify the main routes of viral dissemination. Information generated from a landscape genetics approach will facilitate spatially strategic control programmes that accommodate for heterogeneities in the landscape and therefore utilise resources in the most cost-effective way. This can include the efficient placement of vaccine barriers, surveillance points and adaptive management for large-scale control programmes

    Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles

    Get PDF
    We report a systematic study on the structural and magnetic properties of Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between 55 to 2525 nm, prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (4242 K \leqq TBT_B 345\leqq 345 K for 55 \leqq d 13\leqq 13 nm ) and large coercive fields (HC1600H_C \approxeq 1600 kA/m for T=5T = 5 K). The smallest particles (=5=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc corrections, by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T)K_1(T) through the empirical Br\"{u}khatov-Kirensky relation. This approach provided K1(0)K_1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ01010\tau_0 \simeq 10^{-10} s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener\'{}s relation between K1(T)K_1(T) and M(T)

    Landau Level Crossings and Extended-State Mapping in Magnetic Two-dimensional Electron Gases

    Full text link
    We present longitudinal and Hall magneto-resistance measurements of a ``magnetic'' two-dimensional electron gas (2DEG) formed in modulation-doped Zn1xy_{1-x-y}Cdx_{x}Mny_{y}Se quantum wells. The electron spin splitting is temperature and magnetic field dependent, resulting in striking features as Landau levels of opposite spin cross near the Fermi level. Magnetization measurements on the same sample probe the total density of states and Fermi energy, allowing us to fit the transport data using a model involving extended states centered at each Landau level and two-channel conduction for spin-up and spin-down electrons. A mapping of the extended states over the whole quantum Hall effect regime shows no floating of extended states as Landau levels cross near the Fermi level.Comment: 10 pages, 4 figures, submitted to Phys. Rev.

    Damping of micromechanical structures by paramagnetic relaxation

    Full text link
    We find that the damping of micromechanical cantilevers is sensitive to the relaxation dynamics of paramagnetic ions contained within the levers. We measure cantilevers containing paramagnetic Mn ions as a function of temperature, magnetic field, and the vibrational mode of the lever and find that the levers damping is strongly enhanced by the interplay between the motion of the lever, the ions magnetic anisotropy, and the ratio of the ions longitudinal relaxation rate to the resonance frequency of the cantilever. This enhancement can improve the levers ability to probe the relaxation behavior of paramagnetic or superparamagetic systems; it may also represent a previously unrecognized source of intrinsic dissipation in micromechanical structures.Comment: Accepted for publication, Applied Physics Letters. 11 pages, 3 figure
    corecore